首页> 外文OA文献 >Micro-scale CFD modeling of reactive mass transfer in falling liquid films within structured packing materials
【2h】

Micro-scale CFD modeling of reactive mass transfer in falling liquid films within structured packing materials

机译:规整填料中下落的液膜中反应性传质的微型CFD模拟

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Post-combustion carbon capture in structured packing columns is considered as a promising technology to reduce greenhouse gas (GHG) emissions because of its maturity and the possibility of being retrofitted to existing power plants. CFD plays an important role in the optimization of this technology. However, due to the current computational capacity limitations, the simulations need to be divided into three scales (i.e. micro-, meso- and macro-scale) depending on the flow characteristics to be analyzed. This study presents a 3D micro-scale approach to describe the hydrodynamics and reactive mass transfer of the CO2-MEA chemical system within structured packing materials. Higbie's penetration theory is used to describe the mass transfer characteristics whereas enhancement factors are implemented to represent the gain in the absorption rate attributable to the chemical reaction. The results show a detrimental effect of the liquid load on the absorption rate via a decrease in the enhancement factor. The evolution of the wetted area for MEA solutions is compared to the case of pure water highlighting the differences in the transient behavior. The CO2 concentration profiles are examined showing the capability of the model to reproduce the depletion of the solute within the bulk liquid ascribed to the high value of the Hatta number. Also, several approaches on the reaction mechanism such as reversibility and instantaneous behavior are assessed. The results from micro-scale are to be used in meso-scale analysis in future studies to optimize the reactive absorption characteristics of structured packing materials.
机译:结构化填料塔中的燃烧后碳捕集因其成熟度和可改装到现有电厂的可能性而被认为是减少温室气体(GHG)排放的有前途的技术。 CFD在这项技术的优化中起着重要作用。但是,由于当前的计算能力限制,根据要分析的流动特性,需要将模拟分为三个等级(即,微观,中观和宏观)。这项研究提出了一种3D微型方法来描述结构填料中CO2-MEA化学系统的流体动力学和反应性传质。 Higbie的渗透理论用于描述传质特性,而增强因子用于代表化学反应引起的吸收速率的提高。结果表明,通过增加因子的降低,液体负载对吸收速率的有害影响。将MEA解决方案的润湿区域的演变与纯水的情况进行了比较,突出了瞬态行为的差异。检查了CO2浓度曲线,显示了该模型能够再现归因于Hatta值较高的散装液体中溶质消耗的能力。同样,评估了反应机理的几种方法,例如可逆性和瞬时行为。微观结果将用于未来研究的中尺度分析中,以优化结构填料的反应吸收特性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号